

ISSN: 2277-9655 Impact Factor: 4.116 CODEN: IJESS7

+IJESRT

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY

DESIGN OF COMPOSITION OF CONCRETE USING POLYPROPYLENE FIBRE REINFORCEMENT

Dang Van Thanh^{1,*}, Vu Hoang Hiep², Nguyen Van Bac¹, Hoang Gia Duong¹

¹ Mechanic – Electricity and Construction Department, Vietnam Nation University of Forestry, Hanoi, Vietnam ² Faculty of Civil engineering, Hanoi Architectural University, Hanoi, Vietnam

DOI: 10.5281/zenodo.168854

ABSTRACT

Fibre-reinforced concrete is an emerging trend that delivers new materials with high quality for construction. Polyporpylene fibre, an organic textile, has high potential to be used for reinforcing concrete, but there has been little research conducted into using this fibre for concrete reinforcement worldwide and no research work on this fibre reinforced concrete has been published in Vietnam. Thereofore, researching into Polyporylene fibre reinforced concrete to establish fundamental understandings and material mixture recommendations is considered to be scientifically significant and practically worthwile, especially for the climate and construction conditions in Vietnam. With the use of theoretical and experimental research methods, a procedure for designing the composition of Polypropylene fibre reinforced concrete was achieved and presented in this paper.

KEYWORDS: Polyporpylene fibre, fibre reinforced concrete, concrete.

INTRODUCTION

In recent years, there have been many studies on fibre reinforced concrete in the world with reinforced fibre types such as steel fibre, glass fibre, mineral fibre, lignin fibre, polyester fibre, ... The published reseach works have been mainly concentrated on the effect of fibre to concrete, the selection of suitable fibre and the determination of optimal fibre volume fraction. Jongsung Sim [1] who studied on basalt fibre reinforced concrete indicated that the tensile strength of basalt fibre reinforced concrete increased 1,5 to 2 times, and elongation capacity of the reinforced concrete raised 4-6 times as opposed to the respective properties of a traditional concrete. Dias D P, and Thaumaturgo C [2] showed that concrete reinforced by basalt fibre with 2,65kg/m3 could increase compressive and fracture tensile strength by 26,4% and 12%, respectivly compared to those of a traditional concrete. Some of the research works in China have showed that: the effect of polysester fibre to compressive strength and crack ability of concrete is more clearly noticeable than the effect of glass fiber [3]; Properties of conrecte were enhanced with 0,2÷ 0,3% polyester fiber in volume [4]; When basalt fibre volume fractions of 0%, 0,1%, 0,2% and 0,3% were used in concrete with B30 grade, the tests showed that the compressive strength for 28 days increased with the increase of the volume fraction of the fibre and the maximum increase of the strength was 31,5%. However, the strength only increased slightly in B50 grade when the volume fractions of the fibre increased [5]; when fibre volume fraction increased, the properties of concrete increased accordingly with the compressive strength and fracture tensile strength being the most sensitive to the increase [6,7]. In Vietnam, there have also been some studies on this field: Doan Thi Thu [8] carried out investigation on improving the performances of Jute/Polyproplyene composite; Nguyen Hung Phong [9] reseached on enhancing shear strength for concrete beam by glass fiber; Dang Van Thanh [10] studied on the effect of fibre to the properties of Stone matrix Asphalt.

Through the review of the previous research work above, it has shown that experimental methods were helpful for the studies of fibre reinforced concrete. However, the number of experiments and the systematic methodologies were still limited. There has been little research on Polypropylene fibre and none has published on the design method of concrete composition for this fibre reinforcement. Therefore, the research work presented in this paper has been focused onto Polypropylene fibre as reinforcement for concrete. With the use of the experimental testing

[Thanh* et al., 5(11): November 2016]

ICTM Value: 3.00

ISSN: 2277-9655 Impact Factor: 4.116 CODEN: IJESS7

method through slump criteria and compressive strength properties, composition of Polypropylene fibre-reinforced concrete was investigated and presented in this paper.

MATERIALS AND METHODS

Materials

Binder: Portland cement PCB-40 manufactured inVietnam was used. The technical properties of this cement are in accordance with Vietnam standard TCVN 2682:2009 [11]. Its typical properties are shown in Table 1.

	Table 1: Typical properties of cement PCB-40				
Nº	Test	Request			
1	Compressive strength:				
	- 3 days (± 45 minutes)	\geq 21 N/mm ²			
	- 28 days (± 8 hours)	\geq 40 N/mm ²			
2	Setting time				
	- Initial	\geq 45 mins			
	- Final	\leq 375 mins			
3	Fineness:				
	- The amount of 0,09mm sieve	\leq 10 %			
	- Blain rate	\geq 2800 cm ² /g			

Aggregate: Fine aggregate used for this study was yellow sand in SongHong river. The sand was locally available in Son Tay area, Hanoi city, Vietnam. Coarse aggregate was produced from local sources in Hoa Thach area, Quoc Oai district, Hanoi city, Vietnam. Technical properites of fine and coarse aggregates were in accordance with Vietnam Standard [12].

Water: used for mixing the concrete was as per the recommendation in Vietnam Standard [13].

Fibre: The fibre used was Polypropylene. A picture of the polypropylene fibre is shown in Figure 1, and its properites are shown in Table 2.

Figure 1. Polypropylene fibre

Table	2:	Pronerties	of Polypropy	lene fibre
Iuvic	4.	ropences	οј Ι οιγριοργ	

Properties	Value
Density	0,91 g/cm ³
Ultimate elongation	15%
Diameter	$18 \div 48 \mu m$

Fiber length	6 ÷ 19mm	
Melting point	$160 \div 170^{0}$	
Tensile strength	\geq 460MPa	
Resistance to acid and base	Good	
Young's modulus	≥ 3,5GPa	
Water absorption	N/a	
Health risk	Safe, non-toxic	

Test program *Methodology*

The theoretical and experimental methods were used to design the concrete components. By theoretical caculations in combination with laboratory tests, the concrete components were determined through two indicators, namely, the strength and slump of the concrete mixture. In particular, the following procedure was carried out:

Step 1: Determine the amount of mixing water (W);

Step 2: Determine the ratio of cement to water (C/W);

Step 3: Determine the amount of cement (C) and fibre (F);

Step 4: Determine the amount of coarse and fine aggregate (C_a), (F_a);

Step 5: Finalise the theoretical calculations;

Step 6: Verify the calculations by experimental tests

The experimental method for determining the slump and compressive strenngths

The slump of mixture and compressive strength of the concrete were determined according to Vietnamse standard TCVN3106:1993[14] and TCVN 3118:1993[15].

RESULTS AND DISCUSSION

1. Determining the amount of mixing water

The amount of water (W) was determined based on the conditions of the materials and designing requirements. Chosen concrete grade was B15 with average compressive strength $R_b=20$ Mpa; Thecoarse aggregate used had the largest diameter $D_{max}=20$ mm.

The slump of concrete mixture and the amount of mixing water was selected by the method used in common constructions [16]: For coarse aggregate, crushed stones with $D_{max} = 20$ mm were used, and the slump of mixture was about 6 ÷ 8cm. The amount of water determined for $1m^3$ of the concrete was 205 liters.

2. Determining the ratio of cement to water

The ratio of cement to water (C/W) was based on the Bolomey - Skramtaev fomula [16]:

Regular concrete (C/W = $1,4 \div 2,5$):

$$\frac{C}{W} = \frac{R_{yc}}{A.R_{x}} + 0.5$$

High strength concrete (C/W > 2,5):

$$\frac{\mathrm{C}}{\mathrm{W}} = \frac{\mathrm{R}_{\mathrm{yc}}}{\mathrm{A}_{1}.\,\mathrm{R}_{\mathrm{x}}} - 0,5$$

In which: R_x – The strength of cement (R_x = 40MPa); R_{yc} – The strength of concrete at 28 days; A and A₁ – the factors of raw materials, were indicated in Reference [16].

The raw materials used were with good quality and the strength of concrete was 20MPa. Therefore, the formula wasselected for a regular concrete with A = 0.55.

The cement –water ratio was finally calculated to be 1,42.

3. Determining the amount of cement and fibre

Determining the amount of cement (C) was based on C/W ratio which was determined in the above step.

$$C = \frac{C}{W}.W$$

From the amount of water W = 205 litres and the C/W ratio = 1,42 determined above, the amount of cement for $1m^3$ of concrete was calculated to be 292 kg.

The amount of cement should be compared to the amount of minimum and maximum cement (C_{min} and C_{max}) which are based on the design standard. The determined cement amount was within the range for the minimum and maximum cement in Vietnam standard.

The reinforcing fibre content was determined from the published research results in the research communities [1-7]. Based on the review of the published results, the amount of fibre for $1m^3$ of concrete was selected to be 1,6kg.

4. Determining the amount of coarse and fine aggregates

4.1. Determining the amount of coarse aggeregate (crushed stone C_a)

The formula for 1m³ of concrete was determined as follows:

$$C_{a} = \frac{1000}{\frac{k_{d}.r_{D}}{\gamma_{0D}} + \frac{1}{\gamma_{aD}}} (kg)$$

Where:

R_d – Porosity of crushed stone;

K_d – Loss coefficent, determined in Table 3;

 γ_{0D} – Volumetric weight of crushed stone, kg/litre;

 γ_{aD} - Density of solid particles of crushed stone, kg/litre.

Table 3. Loss coefficent in concrete				
Cement in 1m ³ of concrete	Loss coefficent k _d			
-	Crushed stone	gravel		
250	1.30	1.34		
300	1.36	1.42		
350	1.42	1.48		
400	1.47	1.52		

The cement amount calculated above was C = 292kg, from Table 3, k_d =1,36; crushed stone having: volumetric weight of crushed stone: γ_{0D} = 1,48g/cm³; Density of solid particles of crushed stone: γ_{aD} = 2,8g/cm³ and Porosity of crushed stone r_D = 0,47.

Substituting all the paramaters into the formula, the amount of crushed stone in $1m^3$ of concrete was calculated to be $C_a = 1197$ kg.

4.2. Determining the amount of fine aggeregate (Sand - F_a)

After the amount of the mixing water, cement and crushed stonewere determined, thesand for $1m^3$ of concrete was calculated using the following formula:

 $F_{a} = [1000 - (C/\gamma_{aX} + C_{a}/\gamma_{aD} + W)].\gamma_{aC} \ (kg)$

Where:

 γ_{aX} – weight of solid particles of cement (γ_{aX} = 3,05 kg/litre);

 γ_{aD} – weight of solid particles of crused stone (γ_{aD} = 2,8 kg/litre);

 γ_{aC} – weight of solid particles of sand ($\gamma_{aC} = 2,75$ kg/litre).

Substituting all these parameters into the above formula gives the amount of sand to be $F_a = 747$ kg.

5. Summarising the theoretical calculation results

[Thanh* et al.,	5(11):	November	2016]
ICTM V-L 2	00		

/al	lue:	3.	UU	

The calculated results for $1m^3$ of concrete is shown in Table 4.

Table 4: The results of the theoretically calculated ingredients						
C _a (kg)	F _a (kg)	C (kg)	W (lít)	F (kg)		
1197	747	292	205	1,6		

6. Verifying the calculated results by experiment and adjustment

6.1. Checking the slump of mixture

Keanding the mixture with the identified ingredients in the theoretical calculations (Table 4) and testing the slump of mixture.

If the experiment slump is smaller than the required slump ($S < S_c$) the amount of water and cement must be adjusted with the N/X ratio being maintained constant.

If $S > S_{yc}$: the amount of sand and crushed stone must be changed. However, the C/D ratio must be kept constant.

If $S = S_{yc}$: The result was used and the raw materials were adjusted for $1m^3$ of concrete.

The adjustments of the raw materials were calculated by the following formulas:

C_a ' = 1000. C_a/V	$(kg/m^3);$	$F_a' = 1000. F_a/V (kg/m^3);$
C' = 1000. C/V	$(kg/m^3);$	W' = 1000. W/V (kg/m ³).

Here:

C_a, F_a, C, W: The amount of the crushed stone, sand, cement and water for the volume (litre) of the concrete mixture (kg), respectively;

 C_a ', F_a ', C', W': The amount of the crushed stone, sand, cement and water for $1m^3$ of the concrete mixture after the adjustment for the slump, respectively.

The experiment conducted for this study is illustrated in Figure 2.

Figure 2: Slump test conducted for the study in this paper The result of the first slump testing is presented in Table 5.

Table 5: The result of the first slump testing					
	Sample 01	Sample 02	Sample 03	Average	
Slump (cm)	5,5	5,0	4,0	4,8	

The results in Table 5 indicate that the average slump is smaller than the required slump. Therefore, the raw materials for the mixed concrete need to be adjusted. In particular, theamount of cement and water wasincreased while C/W ratio was kept constant. The water and cement was added and the slump was monitored by subsequent slump tests until the required slump was reached.

It took several rounds of the adjustment of the amount of water and cement and slump tests until the required slump was achieved. The final results for the desirable portions of theraw materials are showned in Table 6 below.

Table 6. The final result of the adjusted ingredientsfor the mixed concrete according to the slump indicator					
$C_{a}\left(kg\right)$	F _a (kg)	C (kg)	W (lít)	F (kg)	
1197	747	300	210	1,6	

With the proportion of the ingredients in the Table 6, the slump of the samples are shown in the Table 7. Table 7. The results of the satisfation slump tests

	Tuble 1. The results of the suitsfullory stand results					
Sampe 01Sample 02Sample 03Average						
Slump (cm)	8,0	7,5	6,0	7,2		

6.2. Verifying compressive strength of the concrete

The concrete mixture that gave the satisfactory slump was used to make samples for the compressive strength tests. The concrete mixture was maintained for 28 days. During this period, the concrete mixture was covered with wet cloth for the first day and soaked in water for the remaining 27 days. The average compressive strength (R_b) was then determined and compared with the required compressive strength (R_{yc}):

If $R_b > R_{yc}$ and the average compressive strength was15% larger than the required compressive strength, then the amount of the cement was reduced. If $R_b > R_{yc}$ but the average compressive strength is not 15% larger than the required compressive strength, the results were considered acceptable.

If $R_b < R_{yc}$, the cement grade needed to be re-selected and other materials needed to be re-calculated.

If $R_b = R_{yc}$ we accept the result of the design and adjusting raw materials for $1m^3$ of concrete. The method is conducted same as conducting for slump.

The experiment for the compressive strength is shown in Figure 3.

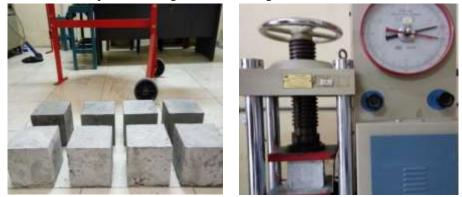


Figure 3. Testing conducted for the compressive strength

The results of the experiment for the concrete compressive strength made from a mixture of the ingredients that had been corrected for the slump are presented in Table 8.

	Tuble of the results of the compressive shengin usedsbed upore						
	Sample 01	Sample 02	Sample 03	Average			
Strength (MPa)	22,8	23,0	23,1	23,0			
	0 1 41 44	•	(1 C (1)	1			

Table 8. The resulst of the compressive strength discussed above

The results in Table 8 show that the average compressive strength of the concrete sample are greater than the required compressive strength, but the difference is not greater than 15%. Therefore, the results of the concrete mixture design were considered acceptable.

A summary of the experimental results is presented in Table 9.

Table 9. Sumary of the experimental results									
Materials for 1m ³ of concrete					Results of experiment				
C _a (kg)	F _a (kg)	C (kg)	W (littre)	F (kg)	S (cm)	R _b (MPa)			
1197	747	300	210	1,6	7,2	23,0			

CONCLUSION

In reality, different methods could be used for the design of the concrete mixture components. However, combining the theoretical calculations with suitable experimental tests has been considered the best method for high accuracy. With the goal of designing the concrete components using polypropylene as fibre reinforcement to make a mixture that has a 20MPa compressive strength, the theoretical calculations in combination with experimental testing through slump and compressive strength indicators of the samples have been successfully used for the study in this paper to achieve the desirable results of the concrete mixture. The basic ingredients for 1m3 of concrete have been identified and a specific procedure has been established for the design of the basic components for the polypropylene fibre-reinforced concrete.

ACKNOWLEDGEMENTS

The laboratory tests were performed at the laboratory center of Mechanic and Civil Engineering faculty in VietNam Nation University of Forestry, Hanoi, Vietnam.

REFERENCES

- 1. Jongsung Sim, Cheolwoo Park, Characteristics of basalt fiber as a strengthening material for concrete structures, Department of Civil and Environmental Engineering, Hanyang University, Sa-I-dong, Ansan, Kyunggi 425-791, South Korea.
- 2. Dias D P, Thaumaturgo C., Fracture toughness of geopolymeric concretes reinforced with basalt fibers, Cement and Concrete Composites, 2005. 27, pp. 49-54.
- 3. Cui Zifeng, Wang Wei, Study glass fiber and polyester fiber mechanical properties of concrete, Construction Technolog, 2010. 05, pp. 0151-0153.
- 4. Shi Guogang, Li Haitao, Xing-Yu Gu, Flexible basalt fiber cement concrete mix design optimization, Highway and Transportation Research. 2012. 05, pp. 24-29
- 5. Zheng Jie, Study on effect of basalt fiber in concrete, China & Foreign Highway, 2011. 05, pp. 0243-0246.
- 6. Lu Chang, Study on Performance and Application of Basalt Fiber Reinforced Concrete Pavement, Henan University, 2012.
- 7. Wu Zhaoxian, Mechanical properties and application of basic basalt fiber reinforced concree, Wuhan University of Technology, 2009. 4.
- 8. Doan Thi Thu Loan, Investigation on improving the performances of jute/polypropylene composite by matrix modification, Journal of Science and Technology, University of Da Nang, 2010.01, pp.28-35.
- 9. Nguyen Hung Phong, Experimental study on shear strengthening of concrete beams using glass fiber reinforced polymer sheets, Journal of Science and Technology Building, 2014.03, pp.23-29.
- 10. Dang Van Thanh, Study on factors affecting the high temperature stability of SMA and the roles of fiber on this stability, Northeast Forestry University, Doctoral Thesis, 2013
- 11. Vietnam Standard TCVN 2682:2009 Portland cements Specifications. Hanoi, 2009
- 12. Vietnam Standard TCVN 7570:2006 Aggregates for concrete and mortar Specifications. Hanoi, 2006
- 13. Vietnam Standard TCVN 4506:2012 Water for concrete and mortar Technical specification. Hanoi, 2012
- 14. Vietnam Standard TCVN 3106:1993 Heavyweight concrete Method for slump test. Hanoi, 1993
- 15. Vietnam Standard TCVN 3118:1993 Heavyweight concrete Method for determination of compressive strength. Hanoi, 1993.
- 16. Pham Duy Huy, other authors. Materials for building 2011. Communication and Transport publishion, Hanoi, 2011.